Discovering syntactic deep structure via Bayesian statistics

نویسنده

  • Jason Eisner
چکیده

In the Bayesian framework, a language learner should seek a grammar that explains observed data well and is also a priori probable. This paper proposes such a measure of prior probability. Indeed it develops a full statistical framework for lexicalized syntax. The learner’s job is to discover the system of probabilistic transformations (often called lexical redundancy rules) that underlies the patterns of regular and irregular syntactic constructions listed in the lexicon. Specifically, the learner discovers what transformations apply in the language, how often they apply, and in what contexts. It considers simpler systems of transformations to be more probable a priori. Experiments show that the learned transformations are more effective than previous statistical models at predicting the probabilities of lexical entries, especially those for which the learner had no direct evidence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Author gender identification from text using Bayesian Random Forest

Nowadays high usage of users from virtual environments and their connection via social networks like Facebook, Instagram, and Twitter shows the necessity of finding out shared subjects in this environment more than before. There are several applications that benefit from reliable methods for inferring age and gender of users in social media. Such applications exist across a wide area of fields,...

متن کامل

Learning Summary Statistic for Approximate Bayesian Computation via Deep Neural Network

Approximate Bayesian Computation (ABC) methods are used to approximate posterior distributions in models with unknown or computationally intractable likelihoods. Both the accuracy and computational efficiency of ABC depend on the choice of summary statistic, but outside of special cases where the optimal summary statistics are known, it is unclear which guiding principles can be used to constru...

متن کامل

Method For Discovering Structure of a Bayesian Network Via a Quantum Computer

A computer program listing consisting of a single file entitled ArQ-Src1-6.txt, in ASCII format, is included with this patent application.

متن کامل

Discovering the Hidden Structure of Complex Dynamic Systems

Dynamic Bayesian networks provide a compact and natural representation for complex dynamic systems. However, in many cases, there is no ex­ pert available from whom a model can be elicited. Learning provides an alternative approach for constructing models of dynamic systems. In this paper, we address some of the crucial compu­ tational aspects of learning the structure of dy­ namic systems, par...

متن کامل

Learning Bayesian Network Structure using Markov Blanket in K2 Algorithm

‎A Bayesian network is a graphical model that represents a set of random variables and their causal relationship via a Directed Acyclic Graph (DAG)‎. ‎There are basically two methods used for learning Bayesian network‎: ‎parameter-learning and structure-learning‎. ‎One of the most effective structure-learning methods is K2 algorithm‎. ‎Because the performance of the K2 algorithm depends on node...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cognitive Science

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2002